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Graph Neural Networks



Graph Neural Networks 
Basic definition

• Input: Graph  with graph labels  for each vertex  

• Each layer consists of two steps[1]

G = (V, E) xv v ∈ V

1) Aggregate features of neighboring vertices 

 

Examples: Sum, Mean, Max, MLPs 

at
v = AGGREGATEt ({xt

u |u ∈ 𝒩(v)})
xt

1

xt
2 xt

3

xt
v at

v

2) Combine aggregate with current vertex label 

 

Examples: Concatenation + Linear Mapping

xt+1
v = COMBINEt (xt

v, at
v)

at
v

xt
v

xt+1
v



Graph Neural Networks 
Layer function

• We can combine the aggregate and combine functions to a single layer function fθ

x1
v x2

v x3
v x4

v

fθ fθ fθ

Figure 1: Propagation of information in a graph neural network



Graph Neural Networks 
Classification

• Depending on layer function we can distinguish between different GNN classes with different 
computational complexity[2]

Model Set broadcasting 
GNNs

Multiset broadcasting 
GNNs

Vector-vector 
consistent GNNs

GNNs with access to 
unique vertex IDs

Input Set Multiset Multiset and port 
numbering 

Unique vertex IDs
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Graph Neural Networks 
Readout function

• Often, we are interested in graph level 
classification/regression tasks 

• GNNs can be extended through a 
function that combines features from all nodes 
 
 
 
(where  denotes the index of the last layer) 

• Should be permutation invariant 

• Examples: Summation, Mean/Max-Pooling

READOUT

T

xG = READOUT ({xT
v |v ∈ V}) xG…

READOUT

Figure 2:  function in a graph neural networkREADOUT



Graph Neural Networks 
Depth and Width

Definition 1 

The depth  of a Graph Neural Networks is equal to its number of layers.d

Definition 2 

The width  of a Graph Neural Network is equal to the largest dimension of  for any vertex  and layer  w xt
v v t

w = max
v∈V

max
t∈{0,…,d}

dim(xt
v) .

• The depth and width of a GNN play a crucial role in its computational power



The Weisfeiler Leman Isomorphism Test



Graph isomorphism

Definition 

Two labeled graphs  and 
 are isomorphic if there exists a 

bijection ,  such that 

i)                 for all  
       for all  

ii)                              for all 

G = (V, E, X)
G′ = (V′ , E′ , X′ )

f : V → V′ 

(f(u), f(v)) ∈ E′ (u, v) ∈ E
(f −1(u′ ), f −1(v′ )) ∈ E (u′ , v′ ) ∈ E′ 

x′ f(v) = xv v ∈ V

• In unlabelled case we can omit labels, or set 
 for all vertices  

• Unknown whether it is solvable in polynomial time

xv = 0 v ∈ V

∼

≁

Figure 3: Two (unlabelled) isomorphic graphs

Figure 4: Two (labelled) non-isomorphic graphs



WL Isomorphism Test 
Overview

• Algorithm for solving the graph isomorphism 
problem 

• Idea: Iteratively reduce graphs to canonical forms 
that coincide if graphs are isomorphic 

• If canonical forms differ, graphs are non-
isomorphic 

• In each step , assign to every node  a label t i xt
i

Graph 1 Graph 2

∼
?

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism Test 
Algorithm[3]
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• Initialization: Set node features  to original graph 
labels

x0
v

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism Test 
Algorithm[3]
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Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features  to original graph 
labels 

• For , repeat 

• For each node  form a multi set  of the 
labels of all neighbors 
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v

t = 0,…, n − 1

v St
v

St
v = {xt

u |u ∈ 𝒩(v)}



WL Isomorphism Test 
Algorithm[3]
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Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features  to original graph 
labels 

• For , repeat 

• For each node  form a multi set  of the 
labels of all neighbors 
 

• Map each pair of label  and multi set  to a 
new label  (e.g. via a hash function)
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v
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WL Isomorphism Test 
Algorithm[3]
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Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features  to original graph 
labels 

• For , repeat 

• For each node  form a multi set  of the 
labels of all neighbors 
 

• Map each pair of label  and multi set  to a 
new label  (e.g. via a hash function)
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WL Isomorphism Test 
Algorithm[3]
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Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features  to original graph 
labels 

• For , repeat 

• For each node  form a multi set  of the 
labels of all neighbors 
 

• Map each pair of label  and multi set  to a 
new label  (e.g. via a hash function)

x0
v

t = 0,…, n − 1

v St
v

xt
v St

v
xt+1

v

St
v = {xt

u |u ∈ 𝒩(v)}



WL Isomorphism Test 
Algorithm[3]
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Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features  to original graph 
labels 

• For , repeat 

• For each node  form a multi set  of the 
labels of all neighbors 
 

• Map each pair of label  and multi set  to a 
new label  (e.g. via a hash function)
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WL Isomorphism Test 
Algorithm[3]
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• Initialization: Set node features  to original graph 
labels 

• For , repeat 

• For each node  form a multi set  of the 
labels of all neighbors 
 

• Map each pair of label  and multi set  to a 
new label  (e.g. via a hash function) 

• Terminate if assignments of nodes to labels did 
not change from previous iteration
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Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism Test 
Algorithm[3]
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{6,6,7,8,8} {6,6,7,8,8}

• Initialization: Set node features  to original graph 
labels 

• For , repeat 

• For each node  form a multi set  of the 
labels of all neighbors 
 

• Map each pair of label  and multi set  to a 
new label  (e.g. via a hash function) 

• Terminate if assignments of nodes to labels did 
not change from previous iteration
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WL Isomorphism Test 
Connection to GNNs

• Power of multi set function used in every layer of anonymous GNNs determines power in classifying 
graph isomorphism

Theorem 1 

Every GNN is at most as powerful as the WL isomorphism test.[1] 

Theorem 2 

A GNN is as powerful as the WL isomorphism test if its layer aggregate, combine and readout functions 
are injective.[1] 



GIN Model 
Definition[1]

• GNN model that is as powerful as the WL isomorphism test  

• Node update in each layer defined via 
 
 
 
 
 
 
where  are learnable parameters and  are learnable multi layer perceptrons ϵk MLPk

xk
v = MLPk (1 + ϵk) xk−1

v + ∑
u∈𝒩(v)

xk−1
u



GIN Model 
Results

Figure 6: Performance of different GNN models on a selection of graph classification tasks[1]



Less Powerful Models 
One-layer perceptron[1]

• Linear model (without bias term) fails to distinguish between some multi sets 

• One-layer perceptron is not a universal approximator of multi set functions (unlike MLP)

Lemma 

There exist finite multi sets , such that for any linear mapping  X1 ≠ X2 W

∑
x∈X1

ReLU(Wx) = ∑
x∈X2

ReLU(Wx)



Less Powerful Models 
Different Aggregation Schemes[1]

Aggregation Function Sum Mean Max

Classification level Multiset Distribution Set

Sample Input 

Failure Example



GNNs with port numbering



Non-anonymous GNNs

• Anonymous GNNs cannot distinguish between messages from different neighbors and are at most as 
powerful as the WL-test 

• Idea: Assign port numbering to distinguish between different neighbours



Port Numbering

Definition: Port 

A port of a graph  is a pair  where  and 
. We denote the set of all ports 

of  with . 

G (v, i) v ∈ V
i ∈ {1,2,…, deg(i)}

G P(G)
3

2

1

Figure 7: Example of a consistent port numbering[4]



Port Numbering

Definition: Port 

A port of a graph  is a pair  where  and 
. We denote the set of all ports 

of  with . 

G (v, i) v ∈ V
i ∈ {1,2,…, deg(i)}

G P(G)

Definition: Port Numbering 

A port numbering is a function , 
such that for any edge , there exist  with 

.  

We call  consistent if it is self-inverse, i.e. 
 

p : P(G) → P(G)
(u, v) i, j

p(u, i) = (v, j)
p

p(p(v, i)) = (v, i) .

1
2

1
2

3

2

1 1

Figure 7: Example of a consistent port numbering[4]



Vector-vector consistent GNNs

• Let  be a consistent port numbering and denote its two components by , i.e. 
 

• Extend anonymous GNNs by including consistent port numbering in layer input 
 
 

• Port numbering can be computed beforehand in linear time

p p1, p2

xt+1
v = fθ (xt

v, (xt
p1(v,1), p2(v,1)), (xt

p1(v,1), p2(v,1)), …(xt
p1(v,Δ), p2(v, Δ)))

p(v, i) = (p1(v, i), p2(v, i))



Vector-vector consistent GNNs 
Example

xt+1
v = fθ (xt

v, (xt
p1(v,1), p2(v,1)), (xt

p1(v,1), p2(v,1)), …(xt
p1(v,Δ), p2(v, Δ)))

= fθ (xt
v, (xt

v2
,1), (xt

v3
,1), (xt

v1
,2))

p(v,1) = (v2,1)

p(v,2) = (v3,1)

p(v,3) = (v1,2)

v3

v1

v v2

1
2

1
2

3

2

1 1



Vector-vector consistent GNNs 
CPNGNNs

• Authors of [3] introduce Consistent Port Numbering Graph Neural Networks (CPNGNNS) 
 
 
 
 
 

• CPNGNNs (and VVC-GNNs) are strictly more powerful than regular GNNs 

• Example: Finding single leaf problem

xt+1
v = ReLU (Wt ⋅ CONCAT (xt

v, xt
p1(v,1), p2(v,1), xt

p1(v,1), p2(v,1), …xt
p1(v,Δ), p2(v, Δ)))

            (in final layer)xfinal
v = MLP (xT

v )



Vector-vector consistent GNNs 
CPNGNNs

• Authors of [3] introduce Consistent Port Numbering Graph Neural Networks (CPNGNNS) 
 
 
 
 
 

• CPNGNNs (and VVC-GNNs) are strictly more powerful than regular GNNs 

• Example: Finding single leaf problem

xt+1
v = ReLU (Wt ⋅ CONCAT (xt

v, xt
p1(v,1), p2(v,1), xt

p1(v,1), p2(v,1), …xt
p1(v,Δ), p2(v, Δ)))

            (in final layer)xfinal
v = MLP (xT

v )



Vector-vector consistent GNNs 
Single Leaf Problem[4]

• Input: star graph  

• Output: A single marked leaf node 

• Basic GNNs fail since different leaf nodes cannot 
be distinguished and output coincides

0

0 0

0 1

0

Figure 8: Example instance of single leaf problem



Distributed Computing



GNNs with unique vertex IDs

• Strictly more powerful than other GNN classes 

• Turing universal under certain conditions 

• Problems arise during training since GNNs with unique vertex IDs do not generalise well 

• Limitations for GNNs with unique vertex IDs also hold for other types of GNNs



LOCAL and CONGEST

• Distributed computing models with unique node IDs 

1. Communication network 
• Represented by graph  
• Each node represents a machine and communicates only 

with its neighbors

G

Figure 9: The LOCAL model of computation



LOCAL and CONGEST

• Distributed computing models with unique node IDs 

1. Communication network 
• Represented by graph  
• Each node represents a machine and communicates only 

with its neighbors 

2. Synchronous computation 
• Computation performed in synchronous rounds where 

each round consists of two steps 
 
i) Propagate messages between neighbors 
ii) Perform arbitrarily powerful computation for each node

G

i)

ii)

Figure 9: The LOCAL model of computation



LOCAL and CONGEST

• Distributed computing models with unique node IDs 

1. Communication network 
• Represented by graph  
• Each node represents a machine and communicates only 

with its neighbors 

2. Synchronous computation 
• Computation performed in synchronous rounds where 

each round consists of two steps 
 
i) Propagate messages between neighbors 
ii) Perform arbitrarily powerful computation for each node 

3. Message size 
• In CONGEST model: restricted in size to b bits

G |m | ≤ b

i)

ii)

Figure 9: The LOCAL model of computation



LOCAL and CONGEST 
Connection to GNNs

• Allows us to infer limits for the computational complexity of GNNs by leveraging results from the LOCAL 
model 

• Similarly, we can infer limits for GNNs with limited width, using results from the CONGEST model 

Theorem 

Message passing GNNs with unique vertex IDs and Turing complete aggregate and combine functions are 
equivalent to algorithms in the LOCAL model of computation.[5] 



Requirements for Turing Universality

Message passing GNNs are Turing universal under the following conditions 

i) Each node is uniquely identified 

ii) The aggregate and combine functions are Turing complete 

iii) The depth of the GNN is larger than the diameter of the input graph  

iv) The width of the GNN is unbounded 

• Note that universality in the case of graph level classification is trivial if the  function is Turing 
complete

READOUT



Requirements for Turing Universality

}
}

Required for 
equivalence to 
LOCAL model

Required for 
Turing universality 
in LOCAL model

Message passing GNNs are Turing universal under the following conditions 

i) Each node is uniquely identified 

ii) The aggregate and combine functions are Turing complete 

iii) The depth of the GNN is larger than the diameter of the input graph  

iv) The width of the GNN is unbounded 

• Note that universality in the case of graph level classification is trivial if the  function is Turing 
complete

READOUT



Limits from CONGEST model

• Yields limits for the depth and width of a GNN, even for local problems 

• Example: -cycle classification for  requires depth k k ≥ 4

d = Ω ( n /(w log n))  if k even, 

d = Ω (n/(w log n))  if k odd. 

Theorem  

If a problem  cannot be solved in less than  rounds in  using messages of at most  bits, 
then  cannot be solved by a GNN of depth  and width .[5]

P d CONGEST b
P d w = 𝒪(b/log(n))



Limits from CONGEST model 
Experimental results

Figure 10: Performance of GNNs with different depth and width on the 4-cycle problem (determining whether a graph 
contains a 4-cycle).[5]



Communication Capacity and Limitations



Communication capacity

• Computational power of GNN dependent on its depth and width: 
motivates generalising notion of communication complexity 

• Assume that each node feature vector takes values in some finite 
alphabet  with  symbols𝒮 s = |𝒮 |

Definition 

Let  be a GNN and fix a graph . For any two disjoint sets , the communication 
capacity  of  (with respect to ) is the maximum number of symbols that can be transmitted 
from  to  and vice versa.[6] 

g G = (V, E) V1, V2 ⊆ V
cg g G, V1, V2

V1 V2

V1 V2

Figure 11: Example of a graph partition



Communication capacity

• The communication capacity of a GNN with respect to the partition  depends on 

i) Its width  and its depth  

ii) The size of messages passed in each layer 

iii) The size of its global state (if included) 

iv) The smallest cut separating the two subsets 

V1, V2

w d

V1, V2



Communication complexity

• Two players with respective inputs  attempt to compute a 
function  

• A communication protocol  determines the sequence of 
exchanged symbols between the players 

• The number of exchanged symbols is denoted by 

xa, xb
f(xa, xb)

π

|π(xa, xb) |

Definition 

The communication complexity  of  corresponds to the minimum worst-case length of any protocol that 
computes  [6] 

cf f
f

cf = min
π

max
(xa,xb)∈Xa×Xb

|π(xa, xb) |

xa ∈ Xa xb ∈ Xb

Figure 12: Two players with respective inputs 
, (here depicted as graphs )xa, xb Ga, Gb



Hardness of Graph Isomorphism Problem

• We can relate communication capacity and complexity to 
derive limitations of GNNs for graph isomorphism 

• Idea: Consider two random graphs connected by a small 
amount of edges 

• Results also hold in expectation for these specific sets of 
graphs

Theorem 

Let  be a GNN using a majority-voting or consensus based  function. To compute the 
isomorphism class of every graph/tree of  nodes, it must be that / .[6]

g READOUT
n cg = Ω(n2) cg = Ω(n)

Figure 13: Sample graphs for the hardness 
proof of graph isomorphism for GNNs



Hardness of Graph Isomorphism Problem 
Empirical Results

Figure 14: Performance of GNNs with different communication capacity on the graph isomorphism problem for a 
sample set of general graphs (a) and a set of trees (b)[6].



Oversquashing



Oversquashing

• GNN requires at least  layers 

• Size of receptive field of a node grows exponentially 
in the number of layers  
 

• For fixed length feature vector  this leads to an 
exponential bottleneck

K ≥ r

K

xt
v

Figure 15: The bottleneck in GNNs with many layers[7]

Definition 

The problem radius  of a graph problem corresponds 
to its required range of interaction.

r

|𝒩K
v | = 𝒪(exp(K))



Oversquashing 
Example Problem

• In the  problem the goal is to 
predict the label of a node based on its degree 

• Solution requires propagation of information from 
all labeled nodes to target node 

• Leads to bottleneck that prevents fitting the 
training data perfectly

NeighborsMatch

Figure 16: The NeighborsMatch problem. The correct 
output label for the depicted graph is C.[7]



Oversquashing 
Empirical Results

Figure 17: Performance of different GNNs on the NeighborsMatch problem. Underfitting 
(caused by oversquashing) can be observed from a problem radius of .[7]r = 4



Conclusion



What we covered

• Hierarchy of different GNN classes 

• Anonymous GNNs are (at most) equivalent to the WL isomorphism test w.r.t. graph isomorphism 

• Connection between GNNs and models of distributed computation 

• Requirements of Turing completeness of GNNs with unique vertex IDs 

• Limitations based on depth and width, and, more generally, communication capacity 

• The problem of oversquashing in deep GNNs and problems with a large radius
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