
Power and Limitations of
Graph Neural Networks

Johannes Weidenfeller

Supervisor

Karolis Martinkus

8 March 2022

Seminar for Deep Neural Networks

Content

1. Graph Neural Networks

2. Weisfeiler Lehman Isomorphism Test

3. GNNs with port numbering

4. Distributed computing

5. Communication capacity

6. Oversquashing

7. Conclusion
1

Graph Neural Networks

Graph Neural Networks
Basic definition

• Input: Graph with graph labels for each vertex

• Each layer consists of two steps[1]

G = (V, E) xv v ∈ V

1) Aggregate features of neighboring vertices

Examples: Sum, Mean, Max, MLPs

at
v = AGGREGATEt ({xt

u |u ∈ 𝒩(v)})
xt

1

xt
2 xt

3

xt
v at

v

2) Combine aggregate with current vertex label

Examples: Concatenation + Linear Mapping

xt+1
v = COMBINEt (xt

v, at
v)

at
v

xt
v

xt+1
v

Graph Neural Networks
Layer function

• We can combine the aggregate and combine functions to a single layer function fθ

x1
v x2

v x3
v x4

v

fθ fθ fθ

Figure 1: Propagation of information in a graph neural network

Graph Neural Networks
Classification

• Depending on layer function we can distinguish between different GNN classes with different
computational complexity[2]

Model Set broadcasting
GNNs

Multiset broadcasting
GNNs

Vector-vector
consistent GNNs

GNNs with access to
unique vertex IDs

Input Set Multiset Multiset and port
numbering

Unique vertex IDs

2

3

v

1

2 31{ } { } []
v v v v

, ,

Graph Neural Networks
Readout function

• Often, we are interested in graph level
classification/regression tasks

• GNNs can be extended through a
function that combines features from all nodes

(where denotes the index of the last layer)

• Should be permutation invariant

• Examples: Summation, Mean/Max-Pooling

READOUT

T

xG = READOUT ({xT
v |v ∈ V}) xG…

READOUT

Figure 2: function in a graph neural networkREADOUT

Graph Neural Networks
Depth and Width

Definition 1

The depth of a Graph Neural Networks is equal to its number of layers.d

Definition 2

The width of a Graph Neural Network is equal to the largest dimension of for any vertex and layer w xt
v v t

w = max
v∈V

max
t∈{0,…,d}

dim(xt
v) .

• The depth and width of a GNN play a crucial role in its computational power

The Weisfeiler Leman Isomorphism Test

Graph isomorphism

Definition

Two labeled graphs and
 are isomorphic if there exists a

bijection , such that

i) for all
 for all

ii) for all

G = (V, E, X)
G′ = (V′ , E′ , X′)

f : V → V′

(f(u), f(v)) ∈ E′ (u, v) ∈ E
(f −1(u′), f −1(v′)) ∈ E (u′ , v′) ∈ E′

x′ f(v) = xv v ∈ V

• In unlabelled case we can omit labels, or set
 for all vertices

• Unknown whether it is solvable in polynomial time

xv = 0 v ∈ V

∼

≁

Figure 3: Two (unlabelled) isomorphic graphs

Figure 4: Two (labelled) non-isomorphic graphs

WL Isomorphism Test
Overview

• Algorithm for solving the graph isomorphism
problem

• Idea: Iteratively reduce graphs to canonical forms
that coincide if graphs are isomorphic

• If canonical forms differ, graphs are non-
isomorphic

• In each step , assign to every node a label t i xt
i

Graph 1 Graph 2

∼
?

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

WL Isomorphism Test
Algorithm[3]

0

0

0

0

0

0

0

0

0

0

Graph 1 Graph 2

• Initialization: Set node features to original graph
labels

x0
v

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

WL Isomorphism Test
Algorithm[3]

 0
{0,0,0}

 0
{0,0}

 0
{0,0,0}

 0
{0,0}

 0
{0,0}

 0
{0,0,0}

 0
{0,0}

 0
{0,0,0}

 0
{0,0}

 0
{0,0}

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features to original graph
labels

• For , repeat

• For each node form a multi set of the
labels of all neighbors

x0
v

t = 0,…, n − 1

v St
v

St
v = {xt

u |u ∈ 𝒩(v)}

WL Isomorphism Test
Algorithm[3]

2

1

2

1

1

2

1

2

1

1

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features to original graph
labels

• For , repeat

• For each node form a multi set of the
labels of all neighbors

• Map each pair of label and multi set to a
new label (e.g. via a hash function)

x0
v

t = 0,…, n − 1

v St
v

xt
v St

v
xt+1

v

St
v = {xt

u |u ∈ 𝒩(v)}

WL Isomorphism Test
Algorithm[3]

 2
{1,1,2}

 1
{2,2}

 2
{1,1,2}

 1
{1,2}

 1
{1,2}

 2
{1,1,2}

 1
{2,2}

 2
{1,1,2}

 1
{1,2}

 1
{1,2}

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features to original graph
labels

• For , repeat

• For each node form a multi set of the
labels of all neighbors

• Map each pair of label and multi set to a
new label (e.g. via a hash function)

x0
v

t = 0,…, n − 1

v St
v

xt
v St

v
xt+1

v

St
v = {xt

u |u ∈ 𝒩(v)}

WL Isomorphism Test
Algorithm[3]

5

4

5

3

3

5

4

5

3

3

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features to original graph
labels

• For , repeat

• For each node form a multi set of the
labels of all neighbors

• Map each pair of label and multi set to a
new label (e.g. via a hash function)

x0
v

t = 0,…, n − 1

v St
v

xt
v St

v
xt+1

v

St
v = {xt

u |u ∈ 𝒩(v)}

WL Isomorphism Test
Algorithm[3]

 5
{3,4,5}

 4
{5,5}

 5
{3,4,5}

 3
{3,5}

 3
{3,5}

 5
{3,4,5}

 4
{5,5}

 5
{3,4,5}

 3
{3,5}

 3
{3,5}

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

• Initialization: Set node features to original graph
labels

• For , repeat

• For each node form a multi set of the
labels of all neighbors

• Map each pair of label and multi set to a
new label (e.g. via a hash function)

x0
v

t = 0,…, n − 1

v St
v

xt
v St

v
xt+1

v

St
v = {xt

u |u ∈ 𝒩(v)}

WL Isomorphism Test
Algorithm[3]

8

7

8

6

6

8

7

8

6

6

Graph 1 Graph 2

• Initialization: Set node features to original graph
labels

• For , repeat

• For each node form a multi set of the
labels of all neighbors

• Map each pair of label and multi set to a
new label (e.g. via a hash function)

• Terminate if assignments of nodes to labels did
not change from previous iteration

x0
v

t = 0,…, n − 1

v St
v

xt
v St

v
xt+1

v

St
v = {xt

u |u ∈ 𝒩(v)}

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm

WL Isomorphism Test
Algorithm[3]

8

7

8

6

6

8

7

8

6

6

Graph 1 Graph 2

{6,6,7,8,8} {6,6,7,8,8}

• Initialization: Set node features to original graph
labels

• For , repeat

• For each node form a multi set of the
labels of all neighbors

• Map each pair of label and multi set to a
new label (e.g. via a hash function)

• Terminate if assignments of nodes to labels did
not change from previous iteration

x0
v

t = 0,…, n − 1

v St
v

xt
v St

v
xt+1

v

St
v = {xt

u |u ∈ 𝒩(v)}

WL Isomorphism Test
Connection to GNNs

• Power of multi set function used in every layer of anonymous GNNs determines power in classifying
graph isomorphism

Theorem 1

Every GNN is at most as powerful as the WL isomorphism test.[1]

Theorem 2

A GNN is as powerful as the WL isomorphism test if its layer aggregate, combine and readout functions
are injective.[1]

GIN Model
Definition[1]

• GNN model that is as powerful as the WL isomorphism test

• Node update in each layer defined via

where are learnable parameters and are learnable multi layer perceptrons ϵk MLPk

xk
v = MLPk (1 + ϵk) xk−1

v + ∑
u∈𝒩(v)

xk−1
u

GIN Model
Results

Figure 6: Performance of different GNN models on a selection of graph classification tasks[1]

Less Powerful Models
One-layer perceptron[1]

• Linear model (without bias term) fails to distinguish between some multi sets

• One-layer perceptron is not a universal approximator of multi set functions (unlike MLP)

Lemma

There exist finite multi sets , such that for any linear mapping X1 ≠ X2 W

∑
x∈X1

ReLU(Wx) = ∑
x∈X2

ReLU(Wx)

Less Powerful Models
Different Aggregation Schemes[1]

Aggregation Function Sum Mean Max

Classification level Multiset Distribution Set

Sample Input

Failure Example

GNNs with port numbering

Non-anonymous GNNs

• Anonymous GNNs cannot distinguish between messages from different neighbors and are at most as
powerful as the WL-test

• Idea: Assign port numbering to distinguish between different neighbours

Port Numbering

Definition: Port

A port of a graph is a pair where and
. We denote the set of all ports

of with .

G (v, i) v ∈ V
i ∈ {1,2,…, deg(i)}

G P(G)
3

2

1

Figure 7: Example of a consistent port numbering[4]

Port Numbering

Definition: Port

A port of a graph is a pair where and
. We denote the set of all ports

of with .

G (v, i) v ∈ V
i ∈ {1,2,…, deg(i)}

G P(G)

Definition: Port Numbering

A port numbering is a function ,
such that for any edge , there exist with

.

We call consistent if it is self-inverse, i.e.

p : P(G) → P(G)
(u, v) i, j

p(u, i) = (v, j)
p

p(p(v, i)) = (v, i) .

1
2

1
2

3

2

1 1

Figure 7: Example of a consistent port numbering[4]

Vector-vector consistent GNNs

• Let be a consistent port numbering and denote its two components by , i.e.

• Extend anonymous GNNs by including consistent port numbering in layer input

• Port numbering can be computed beforehand in linear time

p p1, p2

xt+1
v = fθ (xt

v, (xt
p1(v,1), p2(v,1)), (xt

p1(v,1), p2(v,1)), …(xt
p1(v,Δ), p2(v, Δ)))

p(v, i) = (p1(v, i), p2(v, i))

Vector-vector consistent GNNs
Example

xt+1
v = fθ (xt

v, (xt
p1(v,1), p2(v,1)), (xt

p1(v,1), p2(v,1)), …(xt
p1(v,Δ), p2(v, Δ)))

= fθ (xt
v, (xt

v2
,1), (xt

v3
,1), (xt

v1
,2))

p(v,1) = (v2,1)

p(v,2) = (v3,1)

p(v,3) = (v1,2)

v3

v1

v v2

1
2

1
2

3

2

1 1

Vector-vector consistent GNNs
CPNGNNs

• Authors of [3] introduce Consistent Port Numbering Graph Neural Networks (CPNGNNS)

• CPNGNNs (and VVC-GNNs) are strictly more powerful than regular GNNs

• Example: Finding single leaf problem

xt+1
v = ReLU (Wt ⋅ CONCAT (xt

v, xt
p1(v,1), p2(v,1), xt

p1(v,1), p2(v,1), …xt
p1(v,Δ), p2(v, Δ)))

 (in final layer)xfinal
v = MLP (xT

v)

Vector-vector consistent GNNs
CPNGNNs

• Authors of [3] introduce Consistent Port Numbering Graph Neural Networks (CPNGNNS)

• CPNGNNs (and VVC-GNNs) are strictly more powerful than regular GNNs

• Example: Finding single leaf problem

xt+1
v = ReLU (Wt ⋅ CONCAT (xt

v, xt
p1(v,1), p2(v,1), xt

p1(v,1), p2(v,1), …xt
p1(v,Δ), p2(v, Δ)))

 (in final layer)xfinal
v = MLP (xT

v)

Vector-vector consistent GNNs
Single Leaf Problem[4]

• Input: star graph

• Output: A single marked leaf node

• Basic GNNs fail since different leaf nodes cannot
be distinguished and output coincides

0

0 0

0 1

0

Figure 8: Example instance of single leaf problem

Distributed Computing

GNNs with unique vertex IDs

• Strictly more powerful than other GNN classes

• Turing universal under certain conditions

• Problems arise during training since GNNs with unique vertex IDs do not generalise well

• Limitations for GNNs with unique vertex IDs also hold for other types of GNNs

LOCAL and CONGEST

• Distributed computing models with unique node IDs

1. Communication network
• Represented by graph
• Each node represents a machine and communicates only

with its neighbors

G

Figure 9: The LOCAL model of computation

LOCAL and CONGEST

• Distributed computing models with unique node IDs

1. Communication network
• Represented by graph
• Each node represents a machine and communicates only

with its neighbors

2. Synchronous computation
• Computation performed in synchronous rounds where

each round consists of two steps

i) Propagate messages between neighbors
ii) Perform arbitrarily powerful computation for each node

G

i)

ii)

Figure 9: The LOCAL model of computation

LOCAL and CONGEST

• Distributed computing models with unique node IDs

1. Communication network
• Represented by graph
• Each node represents a machine and communicates only

with its neighbors

2. Synchronous computation
• Computation performed in synchronous rounds where

each round consists of two steps

i) Propagate messages between neighbors
ii) Perform arbitrarily powerful computation for each node

3. Message size
• In CONGEST model: restricted in size to b bits

G |m | ≤ b

i)

ii)

Figure 9: The LOCAL model of computation

LOCAL and CONGEST
Connection to GNNs

• Allows us to infer limits for the computational complexity of GNNs by leveraging results from the LOCAL
model

• Similarly, we can infer limits for GNNs with limited width, using results from the CONGEST model

Theorem

Message passing GNNs with unique vertex IDs and Turing complete aggregate and combine functions are
equivalent to algorithms in the LOCAL model of computation.[5]

Requirements for Turing Universality

Message passing GNNs are Turing universal under the following conditions

i) Each node is uniquely identified

ii) The aggregate and combine functions are Turing complete

iii) The depth of the GNN is larger than the diameter of the input graph

iv) The width of the GNN is unbounded

• Note that universality in the case of graph level classification is trivial if the function is Turing
complete

READOUT

Requirements for Turing Universality

}
}

Required for
equivalence to
LOCAL model

Required for
Turing universality
in LOCAL model

Message passing GNNs are Turing universal under the following conditions

i) Each node is uniquely identified

ii) The aggregate and combine functions are Turing complete

iii) The depth of the GNN is larger than the diameter of the input graph

iv) The width of the GNN is unbounded

• Note that universality in the case of graph level classification is trivial if the function is Turing
complete

READOUT

Limits from CONGEST model

• Yields limits for the depth and width of a GNN, even for local problems

• Example: -cycle classification for requires depth k k ≥ 4

d = Ω (n /(w log n)) if k even,

d = Ω (n/(w log n)) if k odd.

Theorem

If a problem cannot be solved in less than rounds in using messages of at most bits,
then cannot be solved by a GNN of depth and width .[5]

P d CONGEST b
P d w = 𝒪(b/log(n))

Limits from CONGEST model
Experimental results

Figure 10: Performance of GNNs with different depth and width on the 4-cycle problem (determining whether a graph
contains a 4-cycle).[5]

Communication Capacity and Limitations

Communication capacity

• Computational power of GNN dependent on its depth and width:
motivates generalising notion of communication complexity

• Assume that each node feature vector takes values in some finite
alphabet with symbols𝒮 s = |𝒮 |

Definition

Let be a GNN and fix a graph . For any two disjoint sets , the communication
capacity of (with respect to) is the maximum number of symbols that can be transmitted
from to and vice versa.[6]

g G = (V, E) V1, V2 ⊆ V
cg g G, V1, V2

V1 V2

V1 V2

Figure 11: Example of a graph partition

Communication capacity

• The communication capacity of a GNN with respect to the partition depends on

i) Its width and its depth

ii) The size of messages passed in each layer

iii) The size of its global state (if included)

iv) The smallest cut separating the two subsets

V1, V2

w d

V1, V2

Communication complexity

• Two players with respective inputs attempt to compute a
function

• A communication protocol determines the sequence of
exchanged symbols between the players

• The number of exchanged symbols is denoted by

xa, xb
f(xa, xb)

π

|π(xa, xb) |

Definition

The communication complexity of corresponds to the minimum worst-case length of any protocol that
computes [6]

cf f
f

cf = min
π

max
(xa,xb)∈Xa×Xb

|π(xa, xb) |

xa ∈ Xa xb ∈ Xb

Figure 12: Two players with respective inputs
, (here depicted as graphs)xa, xb Ga, Gb

Hardness of Graph Isomorphism Problem

• We can relate communication capacity and complexity to
derive limitations of GNNs for graph isomorphism

• Idea: Consider two random graphs connected by a small
amount of edges

• Results also hold in expectation for these specific sets of
graphs

Theorem

Let be a GNN using a majority-voting or consensus based function. To compute the
isomorphism class of every graph/tree of nodes, it must be that / .[6]

g READOUT
n cg = Ω(n2) cg = Ω(n)

Figure 13: Sample graphs for the hardness
proof of graph isomorphism for GNNs

Hardness of Graph Isomorphism Problem
Empirical Results

Figure 14: Performance of GNNs with different communication capacity on the graph isomorphism problem for a
sample set of general graphs (a) and a set of trees (b)[6].

Oversquashing

Oversquashing

• GNN requires at least layers

• Size of receptive field of a node grows exponentially
in the number of layers

• For fixed length feature vector this leads to an
exponential bottleneck

K ≥ r

K

xt
v

Figure 15: The bottleneck in GNNs with many layers[7]

Definition

The problem radius of a graph problem corresponds
to its required range of interaction.

r

|𝒩K
v | = 𝒪(exp(K))

Oversquashing
Example Problem

• In the problem the goal is to
predict the label of a node based on its degree

• Solution requires propagation of information from
all labeled nodes to target node

• Leads to bottleneck that prevents fitting the
training data perfectly

NeighborsMatch

Figure 16: The NeighborsMatch problem. The correct
output label for the depicted graph is C.[7]

Oversquashing
Empirical Results

Figure 17: Performance of different GNNs on the NeighborsMatch problem. Underfitting
(caused by oversquashing) can be observed from a problem radius of .[7]r = 4

Conclusion

What we covered

• Hierarchy of different GNN classes

• Anonymous GNNs are (at most) equivalent to the WL isomorphism test w.r.t. graph isomorphism

• Connection between GNNs and models of distributed computation

• Requirements of Turing completeness of GNNs with unique vertex IDs

• Limitations based on depth and width, and, more generally, communication capacity

• The problem of oversquashing in deep GNNs and problems with a large radius

References
(1) Xu, Keyulu, et al. ‘How Powerful Are Graph Neural Networks?’ ArXiv:1810.00826 [Cs, Stat], Feb. 2019. arXiv.org, http://arxiv.org/abs/1810.00826.

(2) Sato, Ryoma, et al. ‘Approximation Ratios of Graph Neural Networks for Combinatorial Problems’. Advances in Neural Information Processing
Systems, vol. 32, Curran Associates, Inc., 2019. Neural Information Processing Systems, https://proceedings.neurips.cc/paper/2019/hash/
635440afdfc39fe37995fed127d7df4f-Abstract.html.

(3) Huang, Ningyuan, and Soledad Villar. ‘A Short Tutorial on The Weisfeiler-Lehman Test And Its Variants’. ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), June 2021, pp. 8533–37. arXiv.org, https://doi.org/10.1109/
ICASSP39728.2021.9413523.

(4) Hella, Lauri, et al. ‘Weak Models of Distributed Computing, with Connections to Modal Logic’. Distributed Computing, vol. 28, 2012, https://
doi.org/10.1145/2332432.2332466.

(5) Loukas, Andreas, ‘What Graph Neural Networks Cannot Learn: Depth vs Width’. International Conference on Learning Representations, 2020,
https://openreview.net/forum?id=B1l2bp4YwS.

(6) Loukas, Andreas. ‘How Hard Is to Distinguish Graphs with Graph Neural Networks?’ ArXiv:2005.06649 [Cs, Stat], Oct. 2020. arXiv.org, http://
arxiv.org/abs/2005.06649.

(7) Alon, Uri, and Eran Yahav. ‘On the Bottleneck of Graph Neural Networks and Its Practical Implications’. International Conference on Learning
Representations, 2021, https://openreview.net/forum?id=i80OPhOCVH2.

