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Graph Neural Networks



Graph Neural Networks

Basic definition

Input: Graph G = (V, E) with graph labels x,, for each vertex v € V

—ach layer consists of two steps!]

1) Aggregate features of neighboring vertices

a! = AGGREGATE' ({x!|u € #(v)})
Oxf\‘
®: _0¢
‘//V

X} @ X

—xamples: Sum, Mean, Max, MLPs

2) Combine aggregate with current vertex label

x!*! = COMBINE' (x!,a!)

N —

‘
aV ‘
‘
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—xamples: Concatenation + Linear Mapping



Graph Neural Networks

Layer function

We can combine the aggregate and combine functions to a single layer function f,

Figure 1: Propagation of information in a graph neural network



Graph Neural Networks

Classification

Depending on layer function we can distinguish between different GNN classes with different

computational complexity!?]
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Grap

N Neural Networks

Readout function

Often, we are interested in graph level
classification/regression tasks

GNNs can be extended through a READOUT

funcf

lon that combines features from all nodes

xg = READOUT ({x!|v € V})

(where T denotes the index of the last layer)

Should be permutation invariant

—xamples: Summation, Mean/Max-Pooling
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Figure 2: READOQOUT function in a graph neural network



Graph Neural Networks
Depth and Width

Definition 1

The depth d of a Graph Neural Networks is equal to its number of layers.

Definition 2

The width w of a Graph Neural Network is equal to the largest dimension of x\i for any vertex v and layer ¢

w=max max dim(x’).
veV 1e{0,....d}

The depth and width of a GNN play a crucial role in its computational power



The Weisteller Leman Isomorphism lest



Graph isomorphism

Definition

Two labeled graphs G = (V, E, X) and

G = (V,E' X' areisomor
bijectionf: V — V', sucht

) (fw).f(v)) EE
). 7)) € E

i) Xg,) = X,

ohic If there exists a

nat

forall (u,v) € E
forall (u’,v') € E’

forally € V

INn unlabelled case we can omit labels, or set
x, = 0 for all verticesv € V

Unknown whether it is solvable in polynomial time

Figure 3: Two (unlabelled) isomorphic graphs

@ fad @
@ @ @ @

Figure 4: Two (labelled) non-isomorphic graphs



WL Isomorphism lest

Overview

Algorithm for solving the graph isomorphism

problem
|dea: lteratively reduce graphs to canonical forms ‘ ‘
that coincide If graphs are isomorphic ‘
f canonical forms differ, graphs are non- ) ‘
iISomorphic ‘ -~ ‘
In each step t, assign to every node 1 a label xl.t ‘

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism lest
Algorithmlsl

nitialization: Set node features xg to original graph
abels

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism lest
Algorithmlsl

nitialization: Set node features xg to original graph
abels

- Fort=0,...,n — 1, repeat

~or each node v form a multi set S? of the
abels of all neighbors

Si={x'lue V()

Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism lest
Algorithmlsl

nitialization: Set node features xg to original graph
abels

- Fort=0,...,n — 1, repeat a Q
~or each node v form a multi set S! of the n Q
abels of all neighbors G

Sy = {x,lu € V())

- Map each pair of label x! and multi set S’ to a e G

new label x*1

,  (e.9. via a hash function)
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Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism lest
Algorithmlsl
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WL [somorphism lest

Algorithmlsl

nitialization: Set nod
abels

+ Fort=0,....n—1

-Or each node v
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, repeat
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abels of all neigh

OIS
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- Map each pair of
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- lerminate If assig
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Graph 1 Graph 2

Figure 5: The Weisfeiler-Lehman Isomorphism Algorithm



WL Isomorphism lest
Algorithmlsl

abels
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WL Isomorphism lest

Connection to GNNs

Power of multi set function used in every layer of anonymous GNNs determines power in classifying
graph isomorphism

Theorem 1

—very GNN is at most as powerful as the WL isomorphism test.l]

Theorem 2

A GNN is as powerful as the WL isomorphism test if its layer aggregate, combine and readout functions
are injective.ll




GIN Model

Definitionl]

GNN model that is as powerful as the WL isomorphism test

Node update in each layer defined via

= MLPE| (1 +ef) b1+ ) xk!
ueN (v)

k

where €" are learnable parameters and MLP¥ are learnable multi layer perceptrons



GIN Model

Results

PROTEINS

o ot -
o co (=}
1 1 1

Training accuracy

o
NN
1

100

150

200

250

Epoch
IMDBBINARY

300

350

S ot =
o o0 (=}
1 1 1

Training accuracy

o
8
1

100

150
Epoch

200

250

300

350

1.0 -
>
o
©
5 0.8 -
o
]
©
2 0.6 -
[=
©
= 0.4 -
0 I T T T T T T T T
0 50 100 150 200 250 300 350
Epoch
1.0 -
3‘ S IRCELY STRNEF S Mo gl Salt' ¥ g oY
& el (o Aok Uak ML
5 0.8 it ‘
O !
© |
2 0.6 -
[=
o
= 0.4 -
O | ] 1 1 A T 1] 1 1
0 50 100 150 200 250 300 350
Epoch

Training accuracy

-
o
I

it
(00]
1

o
(o))
!

o
B
1

1

50 100 150 200 250 300 350

Epoch

WL kernel and GNN variants

WL subtree kernel
Sum -- MLP (GIN-0)
Sum -- MLP (GIN-eps)
- Sum -- 1-layer

Mean -- MLP
Mean -- 1-layer (GCN)
—— Max -- MLP

- Max -- 1-layer (GraphSAGE)

Figure 6: Performance of different GNN models on a selection of graph classification tasksl']




| ess Powerful Models

One-layer perceptronl’]

L emma

There exist finite multi sets X; # X,, such that for any linear mapping W

Z ReLU(Wx) = Z ReLU(Wx)

XEX, xX€X,

Linear model (without bias term) fails to distinguish between some multi sets

One-layer perceptron is not a universal approximator of multi set functions (unlike ML




| ess Powerful Models

Different Aggregation Schemesl!]

Aggregation Function

Classification level

Sample Input
O 00000

Fallure Example

Sum

Multiset

Mean

Distribution

Max

Set



GNNs with port numbering



Non-anonymous GNNSs

Anonymous GNNs cannot distinguish between messages from different neighbbors and are at most as
opowerful as the WL-test

|[dea: Assign port numbering to distinguish between different neighlbours



Port Numbering

Definition; Port

A port of a graph G is a pair (v, 1) where v € V and
1€ {1,2,...,deg(i)}. We denote the set of all ports
of G with P(G).

Figure 7: Example of a consistent port numberingl4!



Port Numbering

Definition; Port

A port of a graph G is a pair (v, 1) where v € V and
1€ {1,2,...,deg(i)}. We denote the set of all ports
of G with P(G).

Definition: Port Numbering

A port numbering is a function p : P(G) — P(G),
such that for any edge (u, v), there exist 1, j with 0

p(u, 1) = (Vaj)- ‘ 1

We call p consistent if it is self-inverse, I.e.
Figure 7: Example of a consistent port numberingl4!

p(p(v, 1)) = (v,1).



Vector-vector consistent GNNS

Let p be a consistent port numbering and denote its two components by py, p», 1.€.

p(v, D) = (py(v, 1), p,(v, D))

—xtend anonymous GNNs by including consistent port numbering in layer input

1= (5 (P00 (0 D). (50

Port numbering can be computed beforehand in linear time



Vector-vector consistent GNNS

Example

O
1 p(v,1) = (1,,1)

3
O O =00
2

) p(v,3) = (v1,2)
O
Xt =, (x";, (xgl(v,l),pz(v,l)), <x]§1(v,1),pz(v,1)>, ...<X;I(V,A),pz(v, A)))

= f, (xé, (x\iz»l ) <x§3,1 ) <x‘€1’2) )



Vector-vector consistent GNNs
CPNGNNSs

Authors of [3] introduce Consistent Port Numbering Graph Neural Networks (CPNGNNS)

H'l = Rel .U (Wt CONCAT (XV, xp1(V 1),]?2(\/ 1) pl(v 1),]?2(\/ 1) Pl(V A),pz(V A)>>

x]" = MLP (x]) (in final layer)

CPNGNNs (and VWC-GNNs) are strictly more powerful than regular GNNs

—xample: Finding single leaf problem



Vector-vector consistent GNNs
CPNGNNSs

Authors of [3] introduce Consistent Port Numbering Graph Neural Networks (CPNGNNS)

H'l = Rel .U (Wt CONCAT (XV, xp1(V 1),]?2(\/ 1) pl(v 1),]?2(\/ 1) Pl(V A),pz(V A)>>

x]" = MLP (x]) (in final layer)

CPNGNNs (and VWC-GNNs) are strictly more powerful than regular GNNs

—xample: Finding single leaf problem



Vector-vector consistent GNNs
Single Leaf Problem!“]

Input: star graph

Qutput: A single marked leaf node

Basic GNNs fail since different leaf nodes cannot Q
oe distinguished and output coincides

Figure 8: Example instance of single leaf problem



Distributed Computing



GNNs with unigue vertex |1Ds

Strictly more powerful than other GNN classes

Turing universal under certain conditions

Problems arise during training since GNNs with unique vertex IDs do not generalise well

Limitations for GNNs with unique vertex IDs also hold for other types of GNNs



L OCAL and CONGEST

Distributed computing models with unique node |Ds

1. Communication network

Represented by graph G
—ach node represents a machine and communicates only
with its neighbors

Figure 9: The LOCAL model of computation



L OCAL and CONGEST

Distributed computing models with unique node |IDs

1. Communication network

Represented by graph G
—ach node represents a machine and communicates only
with its neighbors

2. Synchronous computation
- Computation performed in synchronous rounds where ii)
each round consists of two steps

) Propagate messages between neighbors
i) Perform arbitrarily powerful computation for each node

Figure 9: The LOCAL model of computation



L OCAL and CONGEST

Distributed computing models with unique node IDs

1. Communication network

Represented by graph G
—ach node represents a machine and communicates only

with its neighbors

2. Synchronous computation
- Computation performed in synchronous rounds where
each round consists of two steps

) Propagate messages between neighbors
i) Perform arbitrarily powerful computation for each node

3. Message size

- In CONG

—ST model: restricted In size to b bits

i

H @
@ @

Figure 9: The LOCAL model of computation

(2



L OCAL and CONGEST

Connection to GNNs

Theorem

Message passing GNNs with unique vertex IDs and Turing complete aggregate and combine functions are
equivalent to algorithms in the LOCAL model of computation.!°!

Allows us to infer limits for the computational complexity of GNNs by leveraging results from the LOCAL
model

Similarly, we can infer limits for GNNs with limited width, using results from the CONGEST model



Requirements for Turing Universality

Message passing GNNs are Turing universal under the following conditions

)  Each node is uniguely identified

)  The aggregate and combine functions are Turing complete

i) The depth of the GNN is larger than the diameter of the input graph

v)  The width of the GNN is unbounded

- Note that universality in the case of graph level classification is trivial if the READQOU'T function is Turing
complete



Requirements for Turing Universality

Message passing GNNs are Turing universal under the following conditions

i

—ach node Is uniquely identified

The aggregate and combine functions are Turing complete

Required for

equivalence to
LOCAL model

i

V)

he depth of the GNN is larger than the diameter of the input graph

The width of the GNN Is unbounded

Required for
Turing universality
N LOCAL model

- Note that universality in the case of graph level classification is trivial if the READQOU'T function is Turing
complete



Limits from CONGEST model

heorem

f a problem P cannot be solved in less than d rounds in CONGEST using messages of at most b bits,
then P cannot be solved by a GNN of depth d and width w = O(b/log(n)).l5!

Yields limits for the depth and width of a GNN, even for local problems

—xample: k-cycle classification for k > 4 requires depth

d = Q (\/ﬁ/(wlog n)) if k even,

d = € (n/(w log n)) if kK odd.



Limits fromm CONGEST model

Experimental results
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Figure 10: Performance of GNNs with different depth and width on the 4-cycle problem (determining whether a graph
contains a 4-cycle).l



Communication Capacity and Limitations



Communication capacity

Computational power of GNN dependent on its depth and width:
motivates generalising notion of communication complexity

Assume that each node feature vector takes values in some finite
alphabet & with s = | &' | symbols

s Figure 11: Example of a graph partition
Definition

Let g be a GNN and fix a graph G = (V, E). For any two disjoint sets V, V, C V, the communication
capacity C, of g (with respect to G, V;, V,) is the maximum number of symbols that can be transmitted

from V; to V, and vice versa.l®l



Communication capacity

The communication capacity of a GNN with respect to the partition V;, V, depends on

) Its width w and its depth d
) The size of messages passed in each layer

i) The size of its global state (if included)

iv) The smallest cut separating the two subsets V, V,



Communication complexity

Two players with respective inputs x ,, x;, attempt to compute a
function f(x , x;,)

A communication protocol & determines the sequence of
exchanged symbols between the players Alice Bob
xa - Xa Xb - Xb

The number of exchanged symbols is denoted by | z(x , x;) |
Figure 12: Two players with respective inputs
X, X, (here depicted as graphs G, G;)
Definition

The communication complexity Cy of f corresponds to the minimum worst-case length of any protocol that

computes f [©

Cp = min  max |7z(x,x;)]
r (x,x)€X XX,



Hardness of Graph I[somorphism Problem

We can relate communication capacity and complexity to
derive limitations of GNNs for graph isomorphism M M
l[dea: Consider two random graphs connected by a small

amount of edges
Figure 13: Sample graphs for the hardness
proof of graph isomorphism for GNNs

Results also hold in expectation for these specific sets of
graphs

Theorem

Let g be a GNN using a majority-voting or consensus based READQU'T function. To compute the

isomorphism class of every graph/tree of n nodes, it must be that ¢, = Q(nz)/cg = (2(n).M6l



Hardness of Graph I[somorphism Problem

Empirical Results
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Figure 14: Performance of GNNs with different communication capacity on the graph isomorphism problem for a
sample set of general graphs (a) and a set of trees (b)©!:



Oversguashing



Oversguashing

Definition

he problem radius r of a graph problem corresponds  —
to its required range of interaction. ' Bottleneck

.
e’
.®
.*

~
ey
Y
‘e

\4

GNN requires at least K > r layers r{)

.
.
Y A
.*
.

Size of receptive field of a node grows exponentially =
n the number of layers XK 2

| /| = O(exp(K))

Figure 15: The bottleneck in GNNs with many layersl’]

For fixed length feature vector x! this leads to an
exponential bottleneck




Oversguashing

Example Problem

In the NeighborsMatch problem the goal is to
predict the label of a node based on its degree

O—@——=0

Solution requires propagation of information from
all labeled nodes to target node > /ﬁ-@\’% -
_eads to bottleneck that prevents fitting the e .

training data perfectly

Figure 16: The NeighborsMatch problem. The correct
output label for the depicted graph is C.lI7!



Oversguashing

Empirical Results

1 @ “S— e T T |
0-9*5 .......... 15.0.. RRRER RS LR R TR RS SE TR R T P REPRERS 2
008% ........... .................................. o
o S I RNTTE NN N Shie

Acc 0.5 |—m— GGNN (train) |
0:3 [~ oA @maimy | NN B
0.2 |—— GIN (train) |-........ |
().(1) A— GCN (train) ; oA

2 3 4 5 6 7 8
r (the problem radius)

Figure 17: Performance of different GNNs on the NeighborsMatch problem. Underfitting
(caused by oversquashing) can be observed from a problem radius of r = 4.I7]



Conclusion



VWhat we covered

Hierarchy of different GNN classes
Anonymous GNNSs are (at most) equivalent to the WL isomorphism test w.r.t. graph isomorphism

Connection between GNNs and models of distributed computation

Requirements of Turing completeness of GNNs with unique vertex 1Ds
Limitations based on depth and width, and, more generally, communication capacity

The problem of oversquashing in deep GNNs and problems with a large radius
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